

EUROPEAN COMMITTEE FOR STANDARDIZATION
C O M I T É E U R O P É E N D E N O R M A LI S A T I O N
EUR OP ÄIS C HES KOM ITEE FÜR NOR M UNG

Management Centre: Avenue Marnix 17, B-1000 Brussels

© 2009 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No.:CWA 16008-3:2009 E

CEN

WORKSHOP

AGREEMENT

 CWA 16008-3

 August 2009

ICS 35.240.40

English version

 J/eXtensions for Financial Services (J/XFS) for the Java
Platform - Release 2009 - Part 3: Magnetic Stripe & Chip Card

Device Class Interface - Programmer's Reference

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of
which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National
Members of CEN but neither the National Members of CEN nor the CEN Management Centre can be held accountable for the technical
content of this CEN Workshop Agreement or possible conflicts with standards or legislation.

This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland,
France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal,
Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

CWA 16008-3:2009 (E)

2

Contents
FOREWORD .. 3

HISTORY .. 5

1 SCOPE ... 6

2 OVERVIEW.. 7

2.1 DESCRIPTION ... 7
2.2 CLASS HIERARCHY ...10
2.3 CLASSES AND INTERFACES ...11
2.4 SUPPORT CLASSES ..12

3 DEVICE BEHAVIOR ...13

3.1 HANDLING OF NULL PARAMETERS ..13

4 CLASSES AND INTERFACES ...14

4.1 ACCESS TO PROPERTIES ..14
4.2 EXCEPTIONS ...14
4.3 IJXFSMAGSTRIPECONTROL ..15
4.4 IJXFSCHIPCARDCONTROL ..21
4.5 IJXFSMOTORIZEDCARD ..28
4.6 IJXFSMSDSECURE ...32

5 SUPPORT CLASSES ..35

5.1 JXFSMSDTRACKS ..35
5.2 JXFSMSDTRACKSELECTION ..37
5.3 JXFSMSDREADDATA ...38
5.4 JXFSCCDDATA ..40
5.5 JXFSMSDWMDATA ...41
5.6 JXFSMSDSECUREMODE ..42
5.7 JXFSMSDREADDATASECURE ..43
5.8 JXFSCCDCARDSTATUS ..45

6 ENUM CLASSES ..47

6.1 JXFSMSDSTATUSSELECTORENUM ..47
6.2 JXFSMANIPULATIONSTATUSENUM ..47

7 CODES ...48

7.1 ERROR CODES ..48
7.2 STATUS CODES ...49
7.3 OPERATION CODES ...49
7.4 CONSTANTS ..50
7.5 CODE VALUES ..51

8 DEVICE SERVICE INTERFACE METHODS ...54

9 APPENDIX A: MANIPULATION OF CARD READER ..54

CWA 16008-3:2009 (E)

3

Foreword

This CWA contains the specifications that define the J/eXtensions for Financial Services (J/XFS) for the Java TM
Platform, as developed by the J/XFS Forum and endorsed by the CEN J/XFS Workshop. J/XFS provides an API
for Java applications which need to access financial devices. It is hardware independent and, by using 100%
pure Java, also operating system independent.

The CEN J/XFS Workshop gathers suppliers (among others the J/XFS Forum members), service providers as
well as banks and other financial service companies. A list of companies participating in this Workshop and in
support of this CWA is available from the CEN Secretariat, and at
http://www.cen.eu/cenorm/sectors/sectors/isss/activity/jxfs_membership.asp. The specification was agreed upon
by the J/XFS Workshop Meeting of 2009-05-6/9 in Brussels, and the final version was sent to CEN for
publication on 2009-06-12.

The specification is continuously reviewed and commented in the CEN J/XFS Workshop. The information
published in this CWA is furnished for informational purposes only. CEN makes no warranty expressed or
implied, with respect to this document. Updates of the specification will be available from the CEN J/XFS
Workshop public web pages pending their integration in a new version of the CWA (see
http://www.cen.eu/cenorm/sectors/sectors/isss/activity/jxfs_cwas.asp).

The J/XFS specifications are now further developed in the CEN J/XFS Workshop. CEN Workshops are open to
all interested parties offering to contribute. Parties interested in participating and parties wanting to submit
questions and comments for the J/XFS specifications, please contact the J/XFS Workshop Secretariat hosted in
CEN (jxfs-helpdesk@cen.eu).

Questions and comments can also be submitted to the members of the J/XFS Forum through the J/XFS Forum
web-site http://www.jxfs.net.

This CWA is composed of the following parts:
• Part 1: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Base Architecture

- Programmer's Reference
• Part 2: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Pin Keypad

Device Class Interface - Programmer's Reference
• Part 3: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Magnetic Stripe

& Chip Card Device Class Interface - Programmer's Reference
• Part 4: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Text Input/Output

Device Class Interface - Programmer's Reference
• Part 5: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Cash Dispenser,

Recycler and ATM Device Class Interface - Programmer's Reference
• Part 6: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Printer Device

Class Interface - Programmer's Reference
• Part 7: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Alarm Device

Class Interface - Programmer's Reference
• Part 8: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - ensors and

Indicators Unit Device Class Interface - Programmer's Reference
• Part 9: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Depository

Device Class Interface - Programmer's Reference
• Part 10: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Check

Reader/Scanner Device Class Interface - Programmer's Reference (deprecated in favour of Part 13)
• Part 11: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Camera Device

Class Interface - Programmer's Reference
• Part 12: J/eXtensions for Financial Services (J/XFS) for the Java Platform - Release 2009 - Vendor

Dependant Mode Specification - Programmer's Reference
• Part 13: J/eXtensions for Financial Services (J/XFS) for the Java Platform – Scanner Device Class Interface

- Programmer’s Reference (recommended replacement for Part 10)

Note: Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. The

Java Trademark Guidelines are currently available on the web at http://www.sun.com All other
trademarks are trademarks of their respective owners.

CWA 16008-3:2009 (E)

4

This CEN Workshop Agreement is publicly available as a reference document from the National Members of
CEN : AENOR, AFNOR, ASRO, BDS, BSI, CSNI, CYS, DIN, DS, ELOT, EVS, IBN, IPQ, IST, LVS, LST,
MSA, MSZT, NEN, NSAI, ON, PKN, SEE, SIS, SIST, SFS, SN, SNV, SUTN and UNI.

Comments or suggestions from the users of the CEN Workshop Agreement are welcome and should be
addressed to the CEN Management Centre.

CWA 16008-3:2009 (E)

5

History

The main differences to the previous CWA 14923-3:2004 are:
 New reader types in the deviceType property of chip card
 Added the cardStatus property and the JxfsCCDCardStatus class
 Added new methods for activation / deactivation / warm reset
 Updated high coercitivity support
 Added permanent chip card
 Added EMV clarification paragraphs
 Clarifications/Amendments about the behaviour of the chipIO method in case of

errors added.
 testResult and cim86info modified to clarify results of a security check with MM

modules.
 Added Appendix with Card Reader Fraud Behaviour information
 added new manipulationStatus properties and associated resources to provide

Hardware Manipulation information.
 New JxfsMSDStatusSelectorEnum enumeration introduced to allow use of new

getStatus method defined in base architecture documentation.
 open job handling clarified at base architecture level so specific chapter in this

document is removed.
 specific declaration of result codes used by each job has been removed, and now

result refers to common section at the end of the document.

The main differences to the previous CWA 13937-3:2000 are:

 Modified readata method description
 Modified ejectCard method, status event added
 Modified retainCard method, status event added
 Corrected some typing errors
 Added missing clarification on the writeData method
 Removed the JXFS_E_CLAIMED exception
 Removed “media taken” as a code for an intermediate event, at section 6.3
 Added JXFS_S_MEDIA_STATUS events at the ejectCard and reatinCard

methods of the motorized card
 interface.
 Added class hierarchy diagram
 Modified the Description of the readData method of the IJxfsMagStripeControl

interface, relating to the
 magnetic pre-head detection.
 Added paragraph describing handling of null parameters
 Changed from lowercase “j” to uppercase “J” in all interface names starting with

“IJxfs…”

CWA 16008-3:2009 (E)

6

1 Scope
This document describes the Magnetic Stripe Device (MSD) as well as Chip Card Device
(CCD) classes based on the basic architecture of J/XFS which is similar to the JavaPOS
architecture. It is event driven and asynchronous.

Three basic levels are defined in JavaPOS. For J/XFS this model is extended by a
communication layer, which provides device communication that allows distribution of
applications and devices within a network. So we have the following layers in J/XFS :

• Application
• Device Control and Device Manager
• Device Communication
• Device Service

Application developers program against control objects and the Device Manager which
reside in the Device Control layer. This is the usual interface between applications and
J/XFS devices. Device Control objects access the Device Manager to find an associated
Device Service. Device Service objects provide the functionality to access the real device
(i.e. like a device driver).
During application startup the Device Manager is responsible for locating the desired
Device Service object and attaching this to the requesting Device Control object. Location
and/or routing information for the Device Manager reside in a central repository.

To support Magnetic Stripe devices and Chip Card devices the basic Device Control
structure is extended with various properties and methods specific to this device which are
described on the following pages.

CWA 16008-3:2009 (E)

7

2 Overview

2.1 Description
This document describes the J/XFS support classes for both Magnetic Stripe devices
(MSD) as well as Chip Card devices (CCD).

As well as the rest of J/XFS device controls, J/XFS Magnetic Stripe and J/XFS Chip Card
devices use the event driven model and the same behavioral model. Therefore, in the case
of a Magnetic Stripe device, the application will instantiate a J/XFS Magnetic Stripe
Device Control Object and then use the available methods to do I/O. When an I/O method
is called, the J/XFS Magnetic Stripe Device Service will attempt to process the requested
I/O. If the request is invalid or an exception is encountered, the application will be notified
by a J/XFS exception. Completion of the request will be reported by an event. Thus the
application must register itself with the J/XFS Magnetic Stripe Device Control Object for
the various types of events it wishes to handle.

The same model applies to all J/XFS device controls and, in particular, to the Chip Card
Device control.

2.1.1 Magnetic Stripe Device

The J/XFS Magnetic Stripe Reader/Encoder Device Support allows for the operation of
devices with magnetric stripe read/write capabilities. Following are typical devices with
such a capability:

• motor driven card reader/writer
• pull through card reader/writer
• dip card reader/writer

The following tracks and the corresponding international standards are taken into account
in this document:

Track 1 ISO 7811
Track 2 ISO 7811
Track 3 ISO 7811 / ISO 4909

In addition to the pure reading of the tracks mentioned above, security boxes can be used
via this service to check the data of writable tracks for manipulation. These boxes (such as
CIM or MM) are sensor-equipped devices that are able to check some other information on
the card and compare it with the track data.

Leds handling will be defined based on initialization configuration so no reference to them
is made in this document.

Handling of watermark is also considered.

2.1.2 Chip Card Device

The J/XFS Chip Card Device Support allows for the operation of devices with chip access
capabilities. Following are typical devices with such a capability:

• Motor driven chip card devices.
• Dip chip card devices.
• Permanent chip card devices.

CWA 16008-3:2009 (E)

8

The following chips and the corresponding international standards are taken into account in
this document:

• Chip (contacted) ISO 7816

2.1.3 EMV Level 1 & Level 2

EMVCo has defined a set of specifications that terminals have to implement to in order to
support EMV processing. These specifications are public and available on the EMVCo
website www.emvco.com. Any update is communicated on the website, either through new
releases or bulletins.

The specifications contain requirements for hardware -card reader/IFM (Interface Module)-
and software (EMV application Kernel). The specifications apply to different terminals
and solutions.

The definition of:

“Interface module (IFM): a virtual or abstract device that contains the necessary
hardware and software to power the ICC and to support communication between the
terminal and the ICC up to the transport layer. The three main functional components are
the mechanical, electrical and logical ICC interfaces.”
From EMVCo Type Approval Terminal Level 1 Administrative Process Version 4.0
February 26th, 2003

“EMV application kernel: a software module, core, or library, forming part of an overall
terminal application architecture, developed for exclusive support of the EMV debit/credit
functions and application requirements.”
From: EMVCo Type Approval Terminal Level 2 Administrative Process Version 1.0
April 24, 2001

EMVCo has also described the terminal architecture that isolates on one side the IFM and
necessary software/platform/firmware and on the other side the software application which
runs on a terminal.

This distinction is made calling the first Level 1 and the latter Level 2. To prove this
compliancy a vendor must submit its solution for type approval.

The Level 1 type approval process tests compliance with electromechanical characteristics,
logical interface, and transmission protocol requirements defined in part I of the EMV
Specifications.

Level 2 type approval tests compliance with debit/credit application requirements defined
in the remainder of the EMV Specifications.

More in detail the levels and the corresponding sections in the different EMV
Specifications.

For EMV '96:

• Level 1 is based on part I of the EMV ’96 Integrated Circuit Card Specification
for Payment Systems.

• Level 2 is based on parts II, III, and IV, of the EMV ’96 Integrated Circuit Card
Specification for Payment Systems as well as the Application and the Terminal
documentation.

For EMV 2000:

• Level 1 is based on EMV 2000 Integrated Circuit Card Specification for Payment
Systems (book I-part I). Level 2 is based on of the EMV 2000 Integrated Circuit
Card Specification for Payment Systems (book I-part II and books II, II and IV) “

CWA 16008-3:2009 (E)

9

2.1.4 EMV Responsibilities within the MSD Device Service

For a better understanding, it is important to know:
• EMV Level 2 interaction is handled above the J/XFS API
• EMV Level 1 interaction is handled below the J/XFS API.

Please see above the section “EMV Level 1 & Level 2” for a description of these terms.

CWA 16008-3:2009 (E)

10

2.2 Class Hierarchy

IJxfsBaseControl
<<Interface>> JxfsBaseControl

IJxfsMagStripeControl
<<Interface>>

IJxfsChipCardControl
<<Interface>>

IJxfsMotorizedCard
<<Interface>>

IJxfsMSDSecure
<<Interface>>

JxfsMagStripeJxfsChipCard

CWA 16008-3:2009 (E)

11

2.3 Classes and Interfaces

The following classes and interfaces are used by the J/XFS MSD and CCD Device
Controls. In order to support the definition of the different properties of the different
devices (see Introduction), the Device Controls are defined in a class hierarchy.

Class or
Interface

Name Description Extends or Implements

Interface IJxfsBaseControl Base interface for all the
device controls. Contains
methods common to all the
device controls.

Interface IJxfsMagStripeControl Base interface for MSD
controls. Contains method
declarations specific to MSD
controls.

Extends:
IJxfsBaseControl

Interface IJxfsMagStripeService Base interface for MSD
services. Contains the
methods specific to the device
services for the MSD device
category.

Extends:
IJxfsBaseService

Interface IJxfsChipCardControl Base interface for CCD
controls.
Contains method declarations
specific to CCD controls.

Extends:
IJxfsBaseControl

Interface IJxfsChipCardService Base interface for CCD
services. Contains the
methods specific to the device
services for the CCD device
category.

Extends:
IJxfsBaseService

Interface IJxfsMotorizedCard Interface for motorized card
devices.
Contains method declarations
specific to motorized card
devices.

Interface IJxfsMotorizedCardServic
e

This interface should be
implemented by MSD or CCD
device services that provide
access to a motorized device.

Interface IJxfsMSDSecure Interface for motorized card
devices with secure module.
Contains method declarations
specific to card devices with
secure module.

Extends:
IJxfsMotorizedCard

Interface IJxfsMSDSecureService This interface should be
implemented by device
services that provide access to
devices with a secure module.

Class JxfsBaseControl Base class for all the device
controls. Contains properties
common to all the deviceb
controls.

Class JxfsMagStripe Base class for MSD controls.
Contains properties specific to
MSD device controls.

Implements:
IJxfsMagStripeControl
IJxfsMSDSecure

Class JxfsChipCard Base class for CCD controls.
Contains properties specific to
CCD device controls.

Implements:
IJxfsChipCardControl
IJxfsMotorizedCard

CWA 16008-3:2009 (E)

12

2.4 Support Classes

Class or
Interface

Name Description Extends / Implements

Interface JxfsConst Interface containing the Jxfs
constants that are common to
several device categories

--

Interface JxfsMSDConst Interface containing the Jxfs
constants that are common to
all the MSD device controls.

--

Interface JxfsCCDConst Interface containing the Jxfs
constants that are common to
all the CCD device controls.

--

Interface JxfsMotorizedCardConst Interface containing the Jxfs
constants for motorized card
devices.

--

Class JxfsMSDTracks MSD Track selector class.
Indicates for each track if it’s
selected or not.
Properties are read only.

Extends:
JxfsType

Class JxfsMSDTrackSelection Subclass of MSD Track
selector class. It contains the
same properties but they can
be set by applications.

Extends:
JxfsMSDTracks

Class JxfsMSDReadData Data class that contains data
returned in Operation
Complete events for MSD
readData() operation.

Extends:
JxfsType

Class JxfsCCDData Data class that contains data
returned in Operation
Complete events for CCD
input/output operations.

Extends:
JxfsType

Class JxfsCCDCardStatus Data class that contains
information on the state of a
present chip card.

Extends:
JxfsType

Class JxfsMSDWmData Data class that contains data
returned in Operation
Complete events for MSD
readWMtrack() operation.

Extends:
JxfsType

Class JxfsMSDSecureMode Data class that provides
required properties for
readData() operation in
secure mode.

Extends:
JxfsType

Class JxfsMSDReadDataSecure Data class that contains data
returned in Operation
Complete events for MSD
readData() in secure mode.

Extends:
JxfsType

Class JxfsEvent Abstract class from which all
Jxfs event classes are
extended

Extends:
java.util.
EventObject

Class JxfsStatusEvent
JxfsOperationCompleteEve
nt
JxfsIntermediateEvent

The Device Service creates
instances of this classes and
delivers them through the
J/XFS MSD Device Control
event callbacks to the
application

Extend:
JxfsEvent

Class JxfsException Exception class. The J/XFS
MSD Device Control creates
and throws exceptions on
method failure and property
access failure.

Extends:
java.lang.Exception

CWA 16008-3:2009 (E)

13

3 Device behavior

3.1 Handling of null parameters
If null is passed as a method parameter, a JxfsException exception with the errorCode
property set to JXFS_E_PARAMETER_INVALID will be thrown, unless the handling of
a null parameter is explicitly specified for a particular method.

CWA 16008-3:2009 (E)

14

4 Classes and Interfaces
All operation methods return an identificationID. If an operation cannot be processed
because of an error detected before the asynchronous processing of the method begins (i.e.
before the calling thread returns) a JxfsException is thrown. After processing has taken
place, a JxfsOperationCompleteEvent is generated which contains detailed information
about the status of the operation, i.e., if it failed or succeeded, and eventually additional
data as a result.

The Constants, Error Codes, Exceptions, Status Codes and Support Classes that are used in
the methods are described in special chapters at the end of the documentation.

4.1 Access to properties

Please note the following when determining the meaning of a property's Access:

R The property is read only.
W The property is write only.
R/W The property may be read or written.

To access these properties the applications must use the appropriated methods specified by
the JavaBean specification.

getProperty
Syntax Property getProperty () throws JxfsException
Description Returns the requested property.
Parameter None
Event No additional events are generated.
Exceptions Some possible JxfsException value codes:
 JXFS_E_CLOSED
 JXFS_E_UNREGISTERED
 JXFS_E_REMOTE

setProperty
Syntax void setProperty (value) throws JxfsException
Description Sets the requested property.
Parameter The desired property value.
Event No additional events are generated
Exceptions Some possible JxfsException value codes:
 JXFS_E_CLOSED
 JXFS_E_UNREGISTERED
 JXFS_E_REMOTE
 JXFS_E_PARAMETER_INVALID

4.2 Exceptions
All the methods described for the specified interfaces can throw at least some of the
following exceptions:

Value Meaning
JXFS_E_CLOSED The Device Control has not been opened.
JXFS_E_UNREGISTERED The device is not registered at the

JxfsDeviceManager.
JXFS_E_REMOTE A network error ocurred.
JXFS_E_PARAMETER_INVALID A parameter is invalid.
JXFS_E_NOT_SUPPORTED The function is not supported.

Only if a method can throw additional exceptions this is explicitly mentioned.

CWA 16008-3:2009 (E)

15

4.3 IJxfsMagStripeControl

4.3.1 Introduction
The J/XFS MSD Device Control Subclass is defined in JxfsMagStripe and is a subclass of
JxfsBaseControl. Its interface is defined in IJxfsMagStripeControl interface which is a
subclass of IJxfsBaseControl interface. The purpose of the J/XFS MSD Device Control
object is to allow passing data and control between the application and the device support
code so that the associated device can be accessed.

Summary
Although IJxfsMagStripeControl is an interface, and therefore properties do not apply,
properties are detailed here with the objective to provide guidance on the implementation
of those classes that will implement this interface.

Therefore, the IJxfsMagStripeControl consists on the following methods:

• Getters of listed properties.
• Methods listed.

Property Type Access Initialized after
deviceType int R After service

instantiation
mediaStatus JxfsMediaStatus R After successful open
supportedReadTracks JxfsMSDTracks R After successful open
supportedWriteTracks JxfsMSDTracks R After successful open
supportedWriteHiCoTracks JxfsMSDTracks R After successful open
writeMode int R After successful open
manipulationStatus JxfsManipulationStat

usEnum
R After successful open

Method Return May be used after
getProperty Property After successful open
readData identificationID After successful open
writeData identificationID After successful open
writeData identificationID After successful open

4.3.2 Properties

deviceType Property (R)
Type int
Initial Value Depends on device type.
Description Identifies a type of MSD device. Depending on the device type it will

be a combination of the following flags:
 Value Meaning
 JXFS_MSD_TYPE_SWIPE Swipe/pull through magnetic

stripe reader/encoder.
 JXFS_MSD_TYPE_DIP Dip magnetic card reader/encoder.
 JXFS_MSD_TYPE_MOTOR Motorized card reader.

mediaStatus Property (R)
Type JxfsMediaStatus
Initial Value A JxfsMediaStatus (see related section in Base Architecture

document).
Description Specifies the state of the media.
Event If the value of this property changes, the Device Service will send all

registered status listeners a JxfsStatusEvent with the following values:

CWA 16008-3:2009 (E)

16

 Field Value
 status JXFS_S_MSD_MEDIA_STATUS

mediaStatus has changed.
 details A JxfsMediaStatus object.

supportedReadTracks Property (R)
Type JxfsMSDTracks
Initial Value null until open.
Description Indicates which tracks can be physically read by the device.

supportedWriteTracks Property (R)
Type JxfsMSDTracks
Initial Value null until open.
Description Indicates which tracks can be physically written by the device.

supportedWriteHiCoTracks Property (R)
Type JxfsMSDTracks
Initial Value null until open.
Description Indicates which tracks can be physically written in HiCo (High

Coercitive) mode.

writeMode Property (R)
Type int
Initial Value Depends on device service implementation.
Description Indicates the write capabilities of the device. It can be a combination of

the following flags:
 Field Value
 JXFS_MSD_NOT_SUPPORTED The device does not support

writing to magnetic stripes.
 JXFS_MSD_HICO The device supports writing to

high coercivity magnetic stripes.
 JXFS_MSD_LOCO The device supports writing to low

coercivity magnetic stripes.
 JXFS_MSD_AUTO The device service is capable of

determining whether it should
write to high or low coercivity
magnetic stripes.

manipulationStatus Property (R)
Type JxfsManipulationStatusEnum
Initial Value Default JxfsManipulationStatusEnum object.
Description Specifies the state of any present anti fraud feature.
Event If the value of this property changes, the Device Service will send all

registered status listeners a JxfsStatusEvent with the following values:
 Field Value
 status JXFS_S_MSD_MANIPULATIO

N_STATUS
manipulationStatus has changed.

 details A JxfsManipulationStatusEnum
object.

CWA 16008-3:2009 (E)

17

4.3.3 Methods

readData
Syntax identificationID readData (JxfsMSDTrackSelection tracksToRead)

throws JxfsException;

Description This method launches a read operation to obtain the data contained in
the tracks specified by the tracksToRead parameter.

If media is present, the read operation is performed immediately.
Otherwise, the device waits until it is present or the operation is
cancelled.
After a successful completion of this input operation, a
JxfsOperationCompleteEvent event is issued to inform the application
of the results.
Many motorized card readers on the market have an option called
magnetic pre-head detection. If this option is active, then only cards
with a magnetized stripe may enter the device, so in this case a card is
never entered the wrong way. In the case that the device does not have
this option or the option has to be deactivated because the device shall
also accept smart cards without magnetic stripe, then current devices
cannot distinguish between the cases of a card entered in the wrong
way and a card with read errors on all stripes. Therefore in both cases
JXFS_E_MSD_READFAILURE should be returned.

Parameter Type Name Meaning
 JxfsMSDTrackSelection tracksToRead Tracks to be read.

Event JxfsOperationCompleteEvent
 When a readData() operation is completed an

JxfsOperationCompleteEvent event will be sent by MSD Device
Control to all registered operation complete listeners. It will contain the
data read.

 Field Value
 operationID JXFS_O_MSD_READDATA
 identificationID Identification ID of complete operation.
 result Common or device dependent error code. (See

section on Error codes).
 data A JxfsMSDReadData object.
 JxfsIntermediateEvent
 JxfsIntermediateEvent can be sent by MSD Device Control to all

registered intermediate listeners
 Field Value
 operationID JXFS_O_MSD_READDATA
 identificationID Identification ID of operation.
 reason JXFS_I_MSD_NO_MEDIA_PRESENT

The read operation request cannot
progress because there is no media
inserted.

 JXFS_I_MSD_MEDIA_INSERTED
The read operation request continues
because a media has been inserted.

 data null

Exceptions Some possible JxfsException value codes. See section on
JxfsExceptions for other JxfsException value codes.

 Value Meaning
 JXFS_E_MSD_NOTSUPPORT

EDTRACK
At least one track specified in
tracksToRead parameter is not
supported by the device.

CWA 16008-3:2009 (E)

18

 JXFS_E_MSD_NOTRACKS No tracks specified in
tracksToRead parameter.

 writeData
Syntax identificationID writeData (java.util.Vector wdata, boolean newCard)

throws JxfsException;

Description This method initiates a write operation of the data contained in wdata.

If media is present, the write operation is performed immediately.
Otherwise, the device waits until it is present or the operation is
cancelled. If the parameter newCard contains true, the card must be
inserted after the operation is started.

Each vector element of wdata is a byte [] with the data to be written in
each track. Vector element 0 contains data for track 1, vector element 1
contains data for track 2, and so on.

The track data should have no hardware control characters or BCC
included (like SS, SE or BCC). The data for ISO track #1 (6 bits per
character) is transformed in the range of 0x20 to 0x5F and the data for
the ISO tracks #2 and #3 (4 bits per character) are transformed in the
range from 0x30 to 0x3F.

If the card is removed from the device during the write operation, the
JXFS_E_MSD_NOMEDIA error code should be returned.
The use of the newCard parameter is deprecated. It is recommended
that it is not used, i.e., that false is specified.

If no data has to be written for a given track, the corresponding vector
element has to contain null.

If the device supports automatic detection of high/low coercivity
tracks, it will write using the correct mode. If the device does not
support this capability, it will write using the low coercivity mode.

After a successful completion of this output operation, a
JxfsOperationCompleteEvent event is issued to inform the application
of the results.

Parameter Type Name Meaning
 java.util.Vector wdata Data to be written.

Each vector element
contains a byte [] of raw
data per track.
A null vector element is
assumed no data to be
written for its associated
track.

 boolean newCard If false, it specifies that
the operation may
proceed when a card is
already present.

Event JxfsOperationCompleteEvent
 When a writeData () operation is completed a

JxfsOperationCompleteEvent event will be sent by MSD Device
Control to all registered operation complete listeners.

CWA 16008-3:2009 (E)

19

 Field Value
 operationID JXFS_O_MSD_WRITEDATA
 identificationID Identification Id of complete operation.
 result Common or device dependent error code. (See

section on Error codes).
 data A JxfsMSDTracks object.
 JxfsIntermediateEvent
 JxfsIntermediateEvent can be sent by MSD Device Control to all

registered intermediate listeners
 Field Value
 operationID JXFS_O_MSD_WRITEDATA
 identificationID Identification Id of operation.
 reason JXFS_I_MSD_NO_MEDIA_PRESENT

The write operation request cannot
progress because there is no media
inserted.

 JXFS_I_MSD_MEDIA_INSERTED
The write operation request continues
because a media has been inserted.

 data null

Exceptions Some possible JxfsException value codes. See section on
JxfsExceptions for other JxfsException value codes.

 Value Meaning
 JXFS_E_MSD_NOTSUPPORT

EDTRACK
At least one of the specified tracks
is not supported by the device.

 JXFS_E_MSD_NOTRACKS No track data has been specified.

writeData
Syntax identificationID writeData (java.util.Vector wdata, int writeMode)

throws JxfsException;

Description This method initiates a write operation of the data contained in wdata.

If media is present, the write operation is performed immediately.
Otherwise, the device waits until it is present or the operation is
cancelled.

Each vector element of wdata is a byte [] with the data to be written in
each track. Vector element 0 contains data for track 1, vector element 1
contains data for track 2, and so on.

The track data should have no hardware control characters or BCC
included (like SS, SE or BCC). The data for ISO track #1 (6 bits per
character) is transformed in the range of 0x20 to 0x5F and the data for
the ISO tracks #2 and #3 (4 bits per character) are transformed in the
range from 0x30 to 0x3F.

If the card is removed from the device during the write operation, the
JXFS_E_MSD_NOMEDIA error code should be returned.

If no data has to be written for a given track, the corresponding vector
element has to contain null.

The writeMode parameter defines how to write the track data. It
defines whether the tracks are high or low coercivity tracks.

After a successful completion of this output operation, a
JxfsOperationCompleteEvent event is issued to inform the application
of the results.

CWA 16008-3:2009 (E)

20

Parameter Type Name Meaning
 java.util.Vector wdata Data to be written.

Each vector element
contains a byte [] of raw
data per track.
A null vector element is
assumed no data to be
written for its associated
track.

 int writeMode Defines how to write the
track data. It may be one
of the following:

JXFS_MSD_LOCO for
writing a track in low
coercitivity (LoCo)
mode.
JXFS_MSD_HICO for
writing a track in high
coercitivity (HiCo)
mode.
JXFS_MSD_AUTO
where the device service
determines whether to
write in high or low
coercivity mode.

Event JxfsOperationCompleteEvent
 When a writeData () operation is completed a

JxfsOperationCompleteEvent event will be sent by MSD Device
Control to all registered operation complete listeners.

 Field Value
 operationID JXFS_O_MSD_WRITEDATA
 identificationID Identification Id of complete operation.
 result Common or device dependent error code. (See

section on Error codes).
 data A JxfsMSDTracks object.
 JxfsIntermediateEvent
 JxfsIntermediateEvent can be sent by MSD Device Control to all

registered intermediate listeners
 Field Value
 operationID JXFS_O_MSD_WRITEDATA
 identificationID Identification Id of operation.
 reason JXFS_I_MSD_NO_MEDIA_PRESENT

The write operation request cannot
progress because there is no media
inserted.

 JXFS_I_MSD_MEDIA_INSERTED
The write operation request continues
because a media has been inserted.

 data null

Exceptions Some possible JxfsException value codes. See section on
JxfsExceptions for other JxfsException value codes.

 Value Meaning
 JXFS_E_MSD_NOTSUPPORT

EDTRACK
At least one of the specified tracks
is not supported by the device.

 JXFS_E_MSD_NOTRACKS No track data has been specified.

CWA 16008-3:2009 (E)

21

4.4 IJxfsChipCardControl

4.4.1 Introduction
The J/XFS Chip Card Device Control Subclass is defined in JxfsChipCard and is a subclass
of JxfsDeviceControl. Its interface is defined in IJxfsCCDControl interface which is a
subclass of IJxfsBaseControl interface. The purpose of the J/XFS CCD Device Control
object is to allow passing data and control between the application and the device support
code so that the associated device can be accessed.

This class represents a physical device (or part of it) that has chip card access capabilities
(send/receive of commands and data).

Summary
Although IJxfsChipCardControl is an interface, and therefore properties do not apply,
properties are detailed here with the objective to provide guidance in the implementation of
those classes that will implement this interface.

Therefore, the IJxfsChipCardControl consists on the following methods:

• Getters of listed properties.
• Methods listed.

Property Type Access Initialized after
deviceType int R After service

instantiation
mediaStatus JxfsMediaStatus R After successful open
cardStatus JxfsCCDCardStatus R After successful open
manipulationStatus JxfsManipulationStat

usEnum
R After successful open

Method Return May be used after
getProperty Property After successful open
isCcdT boolean After successful open
chipInit identificationID After successful open
chipIO identificationID After successful open
isActivateCardSupported boolean After successful open
isDeactivateCardSupported boolean After successful open
isWarmResetCardSupported boolean After successful open
activateCard identificationID After successful open
deactivateCard identificationID After successful open
warmResetCard identificationID After successful open

4.4.2 Properties

deviceType Property (R)
Type int
Initial Value Depends on device type.
Description Identifies a type of Chip Card device. Depending on the device type it

will be a combination of the following flags.
The device type specifies the way a user has interaction with the device
and thus the necessary actions by an application controlling this user
interaction.

 Value Meaning
 JXFS_CCD_TYPE_SWIPE Swipe/pull through chip card

device.
 JXFS_CCD_TYPE_DIP Dip chip card device.
 JXFS_CCD_TYPE_MOTOR Motorized chip card device.

CWA 16008-3:2009 (E)

22

 JXFS_CCD_TYPE_CONTACT
LESS

Contactless chip card device.

 JXFS_CCD_TYPE_DIP_LATC
HED

Dip chip card device with a latch to
fix the card.

 JXFS_CCD_TYPE_PERMANE
NT

Permanent chip card.

Devices of type JXFS_CCD_TYPE_DIP_LATCHED are JXFS_CCD_TYPE_DIP readers
with an additional lock to fix the card. In order to release the card (unlock the latch), the
ejectCard() method of the IJxfsMotorizedCard interface must be called.

JXFS_CCD_TYPE_PERMANENT chip cards are continuously contacted (but not always
activated) cards that cannot be moved by the user. These cards are often in the SIM form
factor and can be found as additional slots on some modern CCD devices. For this device
type all available methods of the IJxfsMotorizedCard interface will fail with a
JXFS_E_NOTSUPPORTED exception.

mediaStatus Property (R)
Type JxfsMediaStatus
Initial Value A JxfsMediaStatus (see related section in Base Architecture

document).
Description Specifies the state of the media.
Event If the value of this property changes, the Device Service will send all

registered status listeners a JxfsStatusEvent with one of the following
values:

 Field Value
 status JXFS_S_CCD_MEDIA_STATUS

mediaStatus has changed.
 details A JxfsMediaStatus object.

cardStatus Property (R)
Type JxfsCCDCardStatus
Initial Value Depends on device service
Description Specifies the current state of the chip card.
Event If the value of this property changes, the Device Service will send all

registered status listeners a JxfsStatusEvent with one of the following
values:

 Field Value
 status JXFS_S_CCD_CARD_STATUS

cardStatus has changed.
 details A JxfsCCDCardStatus object.

manipulationStatus Property (R)
Type JxfsManipulationStatusEnum
Initial Value Default JxfsManipulationStatusEnum object.
Description Specifies the state of any present anti fraud feature.
Event If the value of this property changes, the Device Service will send all

registered status listeners a JxfsStatusEvent with the following values:
 Field Value
 status JXFS_S_CCD_MANIPULATIO

N_STATUS
manipulationStatus has changed.

 details A JxfsManipulationStatusEnum
object.

CWA 16008-3:2009 (E)

23

4.4.3 Methods

isCcdT
Syntax boolean isCcdT (int noOfProtocol) throws JxfsException;

Description This method is used to obtain information on which protocols are

supported by the device.
Returns true if protocol Tnn, where nn is the value of the parameter, is
supported, false otherwise.

Parameter Type Name Meaning
 int noOfProtocol Number of protocol

being queried, from 0 to
15 for protocols T0 to
T15.

Exceptions No additional exceptions are generated. See section on JxfsExceptions
for common value codes.

chipInit
Syntax identificationID chipInit () throws JxfsException;

Description Performs a chip card initialization and reads the answer to reset (ATR)

data.

If media is present, the operation is performed immediately. Otherwise,
the device waits until it is present or the operation is cancelled.

After a successful completion of this operation, a
JxfsOperationCompleteEvent event is issued to inform the application
of the result.

Event JxfsOperationCompleteEvent
 When a chipInit() operation is completed a

JxfsOperationCompleteEvent event will be sent by CCD Device
Control to all registered operation complete listeners. It will contain the
data read.

 Field Value
 operationID JXFS_O_CCD_CHIPINIT
 identificationID Identification Id of complete operation.
 result Common or device dependent error code. (See

section on Error codes).
 data A JxfsCCDData object.

It contains ATR data from chip.
In the case that there is no chip card data available
in case of an error, the data reference equals null.
An application should be aware that data may be
available even in case of error in certain situations.

 JxfsIntermediateEvent
 JxfsIntermediateEvent can be sent by CCD Device Control to all

registered intermediate listeners
 Field Value
 operationID JXFS_O_CCD_CHIPINIT
 identificationID Identification Id of operation.
 reason JXFS_I_CCD_NO_MEDIA_PRESENT

The read operation request cannot progress because
there is no media inserted.

CWA 16008-3:2009 (E)

24

 JXFS_I_CCD_MEDIA_INSERTED
The read operation request continues because a
media has been inserted.

 data null
Exceptions No additional exceptions are generated. See section on JxfsExceptions

for common value codes.

chipIO
Syntax identificationID chipIO (byte[] chipData, int protocol) throws

JxfsException;
Description This method initiates an input/output operation. The content of

chipData is sent to the chip card. Replied data from the chip card is
returned to the application in a JxfsOperationCompleteEvent event.
The parameter protocol specifies the protocol to use.

After a successful completion of this operation, a
JxfsOperationCompleteEvent event is issued to inform the application
of the results.

Parameter Type Name Meaning
 byte[] chipData Data to be sent.

 int protocol Protocol to be used

(0..15).
Event JxfsOperationCompleteEvent
 When a chipIO() operation is completed a

JxfsOperationCompleteEvent event will be sent by CCD Device
Control to all registered operation complete listeners. It will contain the
data read.

 Field Value
 operationID JXFS_O_CCD_CHIPIO
 identificationID Identification Id of complete operation.
 result Common or device dependent error code. (See

section on Error codes).
 data A JxfsCCDData object.

It contains data returned from chip if operation
completed successfully.
In the case that there is no chip card data available
in case of an error, the data reference equals null.
An application should be aware that data may be
available even in case of error in certain situations.

 JxfsIntermediateEvent
 JxfsIntermediateEvent can be sent by CCD Device Control to all

registered intermediate listeners
 Field Value
 operationID JXFS_O_CCD_CHIPIO
 identificationID Identification Id of operation.
 reason: JXFS_I_CCD_NO_MEDIA_PRESENT

The read operation request cannot progress because
there is no media inserted.

 JXFS_I_CCD_MEDIA_INSERTED
The read operation request continues because a
media has been inserted.

 data null
Exceptions No additional exceptions are generated. See section on JxfsExceptions

for common value codes.

CWA 16008-3:2009 (E)

25

isActivateCardSupported
Syntax boolean isActivateCardSupported() throws JxfsException;

Description This method is used to obtain information if the activateCard method

is supported.
Returns true if the method is supported, false otherwise.

Exceptions No additional exceptions are generated. See section on JxfsExceptions
for common value codes.

isDeactivateCardSupported
Syntax boolean isDeactivateCardSupported() throws JxfsException;

Description This method is used to obtain information if the deactivateCard

method is supported.
Returns true if the method is supported, false otherwise.

Exceptions No additional exceptions are generated. See section on JxfsExceptions
for common value codes.

isWarmResetCardSupported
Syntax boolean isWarmResetCardSupported() throws JxfsException;

Description This method is used to obtain information if the warmResetCard

method is supported.
Returns true if the method is supported, false otherwise.

Exceptions No additional exceptions are generated. See section on JxfsExceptions
for common value codes.

activateCard
Syntax identificationID activateCard () throws JxfsException;

Description Activates the already contacted card electrically. If the card is already

activated, the card will be deactivated and then activated again. This
functionality is also known as a cold reset. The difference to the
chipInit() method is that the chipInit () method also decontacts the chip
(if the contacting of the chip is motorized) which may help if there are
contact problems, but takes more time.

Invoking this command will not move the card. This method will fail,
if there is no card in contact position.

After a successful completion of this operation, a
JxfsOperationCompleteEvent event is issued to inform the application
of the result.

Event JxfsOperationCompleteEvent
 When an activateCard() operation is completed a

JxfsOperationCompleteEvent event will be sent by CCD Device
Control to all registered operation complete listeners. It will contain the
data read.

 Field Value
 operationID JXFS_O_CCD_ACTIVATE_CARD
 identificationID Identification Id of the completed operation.

CWA 16008-3:2009 (E)

26

 result Common or device dependent error code. (See
section on Error codes).

 data A JxfsCCDData object if no fatal error occurred.
It contains ATR data from chip.
Otherwise this value is null.

Exceptions No additional exceptions are generated. See section on JxfsExceptions
for common value codes.

deactivateCard
Syntax identificationID deactivateCardl () throws JxfsException;

Description Deactivates the card electrically. If the card is already deactivated, the

method will return at once with a JxfsOperationCompleteEvent
indicating success.

Invoking this command will not move the card. This method will fail,
if there is no card in contact position.

After a successful completion of this operation, a
JxfsOperationCompleteEvent event is issued to inform the application
of the result.

Event JxfsOperationCompleteEvent
 When a deactivateCard() operation is completed a

JxfsOperationCompleteEvent event will be sent by CCD Device
Control to all registered operation complete listeners. It will contain the
data read.

 Field Value
 operationID JXFS_O_CCD_DEACTIVATE_CARD
 identificationID Identification Id of the completed operation.
 result Common or device dependent error code. (See

section on Error codes).
 data This value is null.
Exceptions No additional exceptions are generated. See section on JxfsExceptions

for common value codes.

warmResetCard
Syntax identificationID warmResetCard () throws JxfsException;

Description Performs a warm reset on the chip card. If the chip card is present, but

deactivated, the method will return with a JXFS_E_ILLEGAL error.

Invoking this command will not move the card. This method will fail,
if there is no card in contact position.

After a successful completion of this operation, a
JxfsOperationCompleteEvent event is issued to inform the application
of the result.

Event JxfsOperationCompleteEvent
 When a warmResetCard() operation is completed a

JxfsOperationCompleteEvent event will be sent by CCD Device
Control to all registered operation complete listeners. It will contain the
data read.

 Field Value
 operationID JXFS_O_CCD_WARM_RESET_CARD
 identificationID Identification Id of the completed operation.
 result Common or device dependent error code. (See

section on Error codes).

CWA 16008-3:2009 (E)

27

 data A JxfsCCDData object if no fatal error occurred.
It contains ATR data from chip.
Otherwise this value is null.

Exceptions No additional exceptions are generated. See section on JxfsExceptions
for common value codes.

CWA 16008-3:2009 (E)

28

4.5 IJxfsMotorizedCard

4.5.1 Introduction
This interface contains those properties and functions commonly supported in motorized
card devices (such as motorized magnetic card readers/encoder and chip card stations)
related with its mechanical capabilities like eject or retain cards.

It is intended that this interface will be implemented by device controls that represent
physical devices able to manage cards with chip or magnetic stripes (that is, subclasses of
JxfsMagStripe and JxfsChipCard classes) that are equipped with motorized and
mechanical capabilities.

Summary
Although IJxfsMotorizedCard is an interface, and therefore properties do not apply,
properties are detailed here with the objective to provide guidance in the implementation of
those classes that will implement this interface.

Therefore, the IJxfsMotorizedCard consists on the following methods:

• Getters of listed properties.
• Methods listed.

Property Type Access Initialized after
powerOffCapabilities int R
powerOnCapabilities int R
retainBinStatus JxfsThresholdStatus R
retainCardCount int R
retainCapability boolean R
secureModuleType int R

Method Return May use after
getProperty Property
setProperty void
resetRetainCardCount void
ejectCard identificationID
retainCard identificationID

4.5.2 Properties

powerOffCapabilities Property (R)
Type int
Initial Value Depends on device.
Description Indicates the action taken by the device at power off if media is

present. Depending on the device capabilities it will be set with one of
the following values:

 Value Meaning
 JXFS_MOTOR_EJECT Card is ejected.
 JXFS_MOTOR_EJECT_THEN_RE

TAIN
Card is ejected, then, after some
seconds, it is retained.

 JXFS_MOTOR_NOACTION No action is taken.
 JXFS_MOTOR_READ_POSITION Card is brought to the read/write

position.
 JXFS_MOTOR_RETAIN Card is retained.

CWA 16008-3:2009 (E)

29

powerOnCapabilities Property (R)
Type int
Initial Value Depends on device.
Description Indicates the action taken by the device at power on if media is present.

Depending on the device capabilities it will be set with one of the
following values:

 Value Meaning
 JXFS_MOTOR_EJECT Card is ejected.
 JXFS_MOTOR_EJECT_THEN_RE

TAIN
Card is ejected, then, after some
seconds, it is retained.

 JXFS_MOTOR_NOACTION No action is taken.
 JXFS_MOTOR_READ_POSITION Card is brought to the read/write

position.
 JXFS_MOTOR_RETAIN Card is retained.

retainBinStatus Property (R)
Type JxfsThresholdStatus
Initial Value A JxfsThresholdStatus (see related section in Base Architecture

document).
Description Indicates the fill status of the retain bin, if supported.
Event If the value of this property changes, the Device Service will send all

registered status listeners a JxfsStatusEvent with the following value:
 Field Value
 status JXFS_S_MOTOR_BIN_STATUS

retainBinStatus has changed.
 details A JxfsThresholdStatus object.

retainCardCount Property (R/W)
Type int
Initial Value Depends on device at open.
Description Number of cards retained. This value is persistent independently of the

power/open/close state.
The resetRetainCardCount method resets this property to 0.

Event If the value of this property changes (increments), the Device Service
will send all registered status listeners a JxfsStatusEvent with a status
value of:

 Field Value
 status JXFS_S_MOTOR_BIN_CARDRE

TAINED
retainCardCount has incremented.

 details None.

retainCapability Property (R)
Type boolean
Initial Value Depends on device.
Description Indicates if device is able to retain cards.

True means it is able to retain, false no retain capability support.

secureModuleType Property (R)
Type int
Initial Value Depends on device.
Description Contains the secure module type, if any being used by the device.

CWA 16008-3:2009 (E)

30

 Value Meaning
 JXFS_MSD_SECTYPE_NOTSU

PPORTED
No security module available.

 JXFS_MSD_SECTYPE_MMBO
X

MMBox module.

 JXFS_MSD_SECTYPE_CIM86 CIM86 module

4.5.3 Methods

resetRetainCardCount
Syntax void resetRetainCardCount ()
Description Sets retainCardCount property to 0.

ejectCard
Syntax identificationID ejectCard () throws JxfsException;

Description Ejects the card allowing card taking from user.

Event
 JxfsOperationCompleteEvent

When a ejectCard() operation is completed a
JxfsOperationCompleteEvent event will be sent by the Device Control
to all registered operation complete listeners with the following data:

 Field Value
 operationID JXFS_O_MOTOR_EJECTCARD
 identificationID The corresponding Id.
 Result Common or device dependent error code. (See

section on Error codes).
 data: null.
 JxfsStatusEvent
 A JxfsStatusEvent can be sent by the Device Control to all registered

status listeners
 Field Value
 status JXFS_S_MEDIA_STATUS
 details JxfsMediaStatus mediaStatus

The new media status of the device.
Exceptions No additional exceptions are generated. See section on JxfsExceptions

for common value codes.

retainCard
Syntax identificationID retainCard () throws JxfsException;

Description Retains card.

Event JxfsOperationCompleteEvent

When a retainCard() operation is completed a
JxfsOperationCompleteEvent event will be sent by the Device Control
to all registered operation complete listeners.

 Field Value
 OperationID JXFS_O_MOTOR_RETAINCARD
 IdentificationID The corresponding Id.
 Result Common or device dependent error code. (See

section on Error codes).
 data null

CWA 16008-3:2009 (E)

31

 JxfsStatusEvent
 A JxfsStatusEvent can be sent by the Device Control to all registered

status listeners
 Field Value
 status JXFS_S_MEDIA_STATUS
 details JxfsMediaStatus mediaStatus

The new media status of the device.
Exceptions No additional exceptions are generated. See section on JxfsExceptions

for common value codes.

CWA 16008-3:2009 (E)

32

4.6 IJxfsMSDSecure

4.6.1 Introduction
This interface contains properties and functions that may be supported in motorized card
MSD devices with a security box installed.

It is intended that this interface will be implemented by device controls that represent
physical devices with the security feature.

Summary
Although IJxfsMSDSecure is an interface, and therefore properties do not apply, properties
are detailed here with the objective to provide guidance in the implementation of those
classes that will implement this interface.

Therefore, the IJxfsMSDSecure consists on the following methods:

• Getters of listed properties.
• Methods listed.

Property Type Access Initialized after
secureModuleKey byte[] R/W
secureModuleStatus int R

Method Return May be used after
getProperty Property
setProperty void
readData identificationID
readWMtrack identificationID

4.6.2 Properties

secureModuleKey Property (R/W)
Type byte []
Initial Value null
Description Contains the secure module key with parity. Its value should be

introduced once and be kept after power off.

secureModuleStatus Property (R)
Type int
Initial Value Depends on device at open.
Description Indicates the status of the security module, if any.
 Value Meaning
 JXFS_S_MSD_SEC_READY Security module ready.
 JXFS_S_MSD_SEC_NOTREADY Security module not ready.
 JXFS_S_MSD_SEC_UNKNOWN State of the security module

cannot be determined with the
device in its current state.

Event If the value of this property changes, the Device Service will send all
registered status listeners a JxfsStatusEvent with a status value of:

 Field Value
 status JXFS_S_MSD_SEC_STATUS

secureModuleStatus has changed.
 details None.

CWA 16008-3:2009 (E)

33

4.6.3 Methods

readData
Syntax identificationID readData (JxfsMSDTrackSelection tracksToRead,

JxfsMSDSecureMode secureMode) throws JxfsException;

Description This method overloads the normal readData method.

It launches a read operation to obtain the data contained in the tracks
specified by the tracksToRead parameter.

If media is present, the read operation is performed immediately.
Otherwise, the device waits until it is present or the operation is
cancelled.
After a successful completion of this input operation, a
JxfsOperationCompleteEvent event is issued to inform the application
of the results.

Parameter Type Name Meaning
 JxfsMSDTrackSelection tracksToRead Tracks to be read.

 JxfsMSDSecureMode secureMode Required settings for

secure operation.

Event JxfsOperationCompleteEvent
 When a readData() operation is completed a

JxfsOperationCompleteEvent event will be sent by MSD Device
Control to all registered operation complete listeners. It will contain the
data read.

 Field Value
 operationID JXFS_O_MSD_READDATA
 identificationID Identification ID of complete operation.
 result Common or device dependent error code. (See

section on Error codes).
 data A JxfsMSDReadDataSecure object.
 JxfsIntermediateEvent
 JxfsIntermediateEvent can be sent by MSD Device Control to all

registered intermediate listeners
 Field Value
 operationID JXFS_O_MSD_READDATA
 identificationID Identification ID of operation.
 reason JXFS_I_MSD_NO_MEDIA_PRESENT

The read operation request cannot
progress because there is no media
inserted.

 JXFS_I_MSD_MEDIA_INSERTED
The read operation request continues
because a media has been inserted.

 data null

Exceptions Some possible JxfsException value codes. See section on
JxfsExceptions for other JxfsException value codes.

 Value Meaning
 JXFS_E_MSD_NOTSUPPORT

EDTRACK
At least one track specified in
tracksToRead parameter is not
supported by the device.

 JXFS_E_MSD_NOTRACKS No tracks specified in
tracksToRead parameter.

CWA 16008-3:2009 (E)

34

 JXFS_E_MSD_NOTSUPPORT
EDCAP

The service does not have secure
capability.

readWMtrack
Syntax identificationID readWMtrack () throws JxfsException;

Description This method launches a read operation to obtain the data contained in

the Watermark.

If media is present, the read operation is performed immediately.
Otherwise, the device waits until it is present or the operation is
cancelled.

After a successful completion of this input operation, a
JxfsOperationCompleteEvent event is issued to inform the application
of the results.

Event JxfsOperationCompleteEvent
 When a readData() operation is completed a

JxfsOperationCompleteEvent event will be sent by MSD Device
Control to all registered operation complete listeners. It will contain the
data read.

 Field Value
 operationID JXFS_O_MSD_READDATA
 identificationID Identification ID of complete operation.
 result Common or device dependent error code. (See

section on Error codes).
 data A JxfsMSDWmData with Watermark data.
Exceptions Some possible JxfsException value codes. See section on

JxfsExceptions for other JxfsException value codes.
 Value Meaning
 JXFS_E_MSD_NOTSUPPORT

EDTRACK
Watermark is not supported.

CWA 16008-3:2009 (E)

35

5 Support Classes

5.1 JxfsMSDTracks
This class provides properties and methods to query which tracks of a MSD device have
been selected, are active or have been written.

Used by readData method.

Summary
Implements : -- Extends : JxfsType

Property Type Access Initialized after
track1 boolean R
track2 boolean R
track3 boolean R

Method Return May use after
isProperty Property
allTracks boolean
noTracks boolean
JxfsMSDTracks (boolean
track1, boolean track2,
boolean track3)

(constructor of the class)

5.1.1 Properties

track1 Property (R)
Type boolean
Initial Value false
Description Indicates if track1 is selected.
 Value Meaning
 false Track1 is not selected.
 true Track1 is selected.

track2 Property (R)
Type boolean
Initial Value false
Description Indicates if track2 is selected.
 Value Meaning
 false Track2 is not selected.
 true Track2 is selected.

track3 Property (R)
Type boolean
Initial Value false
Description Indicates if track3 is selected.
 Value Meaning
 false Track3 is not selected.
 true Track3 is selected.

CWA 16008-3:2009 (E)

36

5.1.2 Methods

isTrack1 .. isTrack3 Methods
Syntax boolean isTrack1 () .. boolean isTrack3 ()
Description Returns true if specific track property is set to true.

allTracks Method
Syntax boolean allTracks ()
Description Returns true if all tracks (track1, track2 and track3) are set to true.

noTracks Method
Syntax boolean noTracks ()
Description Returns true if all tracks (track1, track2 and track3) are set to false.

JxfsMSDTracks Constructor
Syntax JxfsMSDTracks (boolean track1, boolean track2, boolean track3)
Description Constructor of the class.

CWA 16008-3:2009 (E)

37

5.2 JxfsMSDTrackSelection
This class provides properties and methods to query and select the active tracks of a MSD
device.

Summary
Implements : -- Extends : JxfsMSDTracks

Property Type Access Initialized after
No additional
properties.

Method Return May use after
setProperty void
setAllTracks void
setNoTracks void
JxfsMSDTrackSelection
(boolean track1, boolean
track2, boolean track3)

(constructor of the class)

5.2.1 Properties

 No additional properties to those inherited from base class JxfsMSDTracks.

5.2.2 Methods

setTrack1 .. setTrack3 Methods
Syntax void setTrack1 () .. void setTrack3 ()
Description Set specific track property to true.

setAllTracks Method
Syntax void setAllTracks ()
Description Sets all tracks (track1, track2 and track3 properties) to true.

setNoTracks Method
Syntax void setNoTracks ()
Description Sets all tracks (track1, track2 and track3 properties) to false.

JxfsMSDTrackSelection Constructor
Syntax JxfsMSDTrackSelection (boolean track1, boolean track2, boolean

track3)
Description Constructor of the class.

CWA 16008-3:2009 (E)

38

5.3 JxfsMSDReadData

This class contains the data returned by a JxfsOperationCompleteEvent event for
readData() operation.

Summary
Implements : -- Extends : JxfsType

Property Type Access Initialized after
DataRead java.util.Vector R
tracksRead JxfsMSDTracks R
resultReadTrack1 int R
resultReadTrack2 int R
resultReadTrack3 int R

Method Return May use after
getProperty Property
JxfsMSDReadData
(java.util.Vector dataRead,
JxfsMSDTracks
tracksRead, int
resultReadTrack1, int
resultReadTrack2, int
resultReadTrack3)

(constructor of the class)

5.3.1 Properties

dataRead Property (R)
Type java.util.Vector
Description Vector of three byte []. Each one contains the raw data read from a

track. Vector element 0 contains data for track 1, vector element 1
contains data for track 2, and so on.
If no data has been read for a given track, the corresponding vector
element contains null.
The track data has no hardware control characters or BCC included
(like SS, SE, or BCC). The data for ISO track #1 (6 bits per character)
is transformed in the range of 0x20 to 0x5F and the data for the ISO
tracks #2 and #3 (4 bits per character) are transformed in the range
from 0x30 to 0x3F.

tracksRead Property (R)
Type JxfsMSDTracks
Description Indicates which tracks were effectively read.

 resultReadTrack1, resultReadTrack2, resultReadTrack3 Properties (R)
Type int
Initial Value Depends on device type.
Description Holds the error code resulting from the read operation for the tracks

that could not be read. Should be consulted when a global read error
JXFS_E_MSD_READFAILURE has been reported.

CWA 16008-3:2009 (E)

39

Applications must not rely on specific error codes since these may
depend on the specific device for a given faulty card.
They will be set with one of the following values:

 Value Meaning
 JXFS_E_MSD_NOTSUPPORTE

DTRACK
Track not supported by device.

 JXFS_E_MSD_READFAILURE Read error on track.
 JXFS_E_MSD_PARITY Parity read error.
 JXFS_E_MSD_READ_EOF Only SS,SE,BCC on track.
 JXFS_E_MSD_NO_STRIPE No magnetic stripe or flux on stripe

detected (if device has capability to
detect this situation).

 JXFS_E_MSD_READ_OTHER Any other type of error.

5.3.2 Methods

JxfsMSDReadData Constructor
Syntax JxfsMSDReadData (java.util.Vector dataRead, JxfsMSDTracks

tracksRead, int resultReadTrack1, int resultReadTrack2, int
resultReadTrack3)

Description Constructor of the class.

CWA 16008-3:2009 (E)

40

5.4 JxfsCCDData

This class contains the data returned by an OperationCompleteEvent event for chipInit()
and chipIO() operations.

Summary
Implements : -- Extends : JxfsType

Property Type Access Initialized after
chipData byte[] R

Method Return May use after
getProperty Property
JxfsCCDData (byte[]
chipData)

(constructor of the class)

5.4.1 Properties

chipData Property (R)
Type byte[]
Description Contains the data returned by the chip card after a successfull

completion of an I/O operation.
If operation completed is chipInit () , then it contains the ATR data
from the chip.
If operation completed is chipIO () , then it contains the data replied by
the chip.

5.4.2 Methods

JxfsCCDData Constructor
Syntax JxfsCCDData (byte[] chipData)
Description Constructor of the class.

CWA 16008-3:2009 (E)

41

5.5 JxfsMSDWmData

This class contains the data returned by a JxfsOperationCompleteEvent event for
readWMtrack() operation.

Summary
Implements : -- Extends : JxfsType

Property Type Access Initialized after
wmData byte[] R

Method Return May use after
getProperty Property
JxfsMSDWmData (byte[]
wmData)

(constructor of the class)

5.5.1 Properties

wmData Property (R)
Type byte[]
Description Contains the raw Watermark data read

5.5.2 Methods

JxfsMSDWmData Constructor
Syntax JxfsMSDWmData (byte[] wmData)
Description Constructor of the class.

CWA 16008-3:2009 (E)

42

5.6 JxfsMSDSecureMode

This class provides required properties for readData() operation in secure mode.

Summary
Implements : -- Extends : JxfsType

Property Type Access Initialized after
securityCheck boolean R/W
secureTestCard boolean R/W

Method Return May be used after
isProperty Property
setProperty void
JxfsMSDSecureMode
(boolean securityCheck,
boolean secureTestCard)

(constructor of the class)

5.6.1 Properties

 securityCheck Property (R/W)
Type boolean
Description Indicates whether a security check has to be requested in read

operation. Since the overloaded method will normally be used when
security check is desired, this property will usually be true.

 Value Meaning
 true Security check requested.
 false No security check requested.

securityTestCard Property (R/W)
Type boolean
Description Indicates whether the card to be read is an ecCard or a Test Card.
 Value Meaning
 true Test card to be read.
 false Normal card to be read.

5.6.2 Methods

JxfsMSDSecureMode Constructor
Syntax JxfsMSDSecureMode (boolean securityCheck, boolean

secureTestCard)
Description Constructor of the class.

CWA 16008-3:2009 (E)

43

5.7 JxfsMSDReadDataSecure

This class contains the data returned by a JxfsOperationCompleteEvent event for
readData() method in secure mode.

Summary
Implements : -- Extends : JxfsType

Property Type Access Initialized after
readData JxfsMSDReadData R
securityInfo int R
testResult byte R
cim86Info byte [] R

Method Return May be used after
getProperty Property
JxfsMSDReadDataSecure
(JxfsMSDReadData
readData, int securityInfo,
byte testResult, byte[]
cim86Info)

(constructor of the class)

5.7.1 Properties

readData Property (R)
Type JxfsMSDReadData
Description This class contains the data obtained from readData() operation as in

the unsecure mode. See JxfsMSDReadData class for details.

securityInfo Property (R)
Type int
Description Indicates the result of the security check in the read operation, that

could be one of the following values:
 Value Meaning
 JXFS_MSD_SEC_NOCHECK No security check was requested.
 JXFS_MSD_SEC_NOTREADY Security module was not ready.
 JXFS_MSD_SEC_SECFAIL Security module failed reading

media security sign.
 JXFS_MSD_SEC_SECOK Successful security check.

testResult Property (R)
Type byte
Description In case of a MM module:

Holds the result of the given customer card or the result of the given
test card. See MM module specifications.

In case of a CIM-86 module:
Holds the test result for the given test card. See CIM-86 specifications.
In case of customer cards the content of this property is not defined.

CWA 16008-3:2009 (E)

44

cim86Info Property (R)
Type byte[]
Description In case of a MM module the content of this property is an empty array

as the MM module does not provide additional information.

In case of a CIM-86 module:
Contains detailed result of the security check in the read operation for
CIM-86 modules. The first byte contains the result of the security
check for the given customer card. See CIM-86 specifications.

5.7.2 Methods

JxfsMSDReadDataSecure Constructor
Syntax JxfsMSDReadDataSecure (JxfsMSDReadData readData, int

securityInfo, byte testResult, byte[] cim86Info)
Description Constructor of the class.

CWA 16008-3:2009 (E)

45

5.8 JxfsCCDCardStatus
This class defines the state of a present chip card. Every change of this state is reported
with a JXFS_S_CCD_CARD_STATUS event.

Summary
Implements : Cloneable Extends : JxfsType

Method Return Meaning
JxfsCCDCardStatus(boole
an notSupported, boolean
unknown, boolean
inContactPosition, boolean
contacted, boolean
activated)

void Constructs a new object, card
state is set accordingly.

isNotSupported() boolean This functionality is not
supported.

isUnknown() boolean The current state of the chip card
is not known.

isInContactPosition() boolean A chip card is present in contact
position.

isContacted() boolean A chip card is present and
contacted.

isActivated() boolean A chip card is activated.
toString() java.lang.String Returns a short textual

representation of the contents of
this object.

5.8.1 Methods

JxfsCCDCardStatus Constructor
Syntax JxfsCCDCardStatus(boolean notSupported, boolean unknown,

boolean inContactPosition, boolean contacted, boolean activated)
Description Constructor of the class.

The following combinations of the states are allowed:
• All states false (either no card or card not in chip card

contacting position)
• isInContactPosition
• isInContactPosition & isContacted
• isInContactPosition & isContacted & isActivated
• isUnknown
• isNotSupported

Exceptions Some possible JxfsException value codes. See section on
JxfsExceptions for other JxfsException value codes.

 Value Meaning
 JXFS_E_PARAMETER_INVA

LID
An invalid combination of values
was provided.

isInContactPosition Method

Syntax boolean isInContactPosition ()
Description Returns true if card is present in chip card contacting position.

CWA 16008-3:2009 (E)

46

isContacted Method

Syntax boolean isContacted()
Description Returns true if card is physically contacted.

isActivated Method

Syntax boolean isActivated()
Description Returns true if card is electrically activated.

isUnknown Method

Syntax boolean isUnknown()
Description Returns true if the status of the card cannot be determined with the

device in its current state.

IsNotSupported Method

Syntax boolean isNotSupported()
Description Returns true if this functionality is not supported by this device.

In a motorized reader a card will first be present (mediaStatus), then a chipInit() will
transport it into the contact position (isInContactPosition()==true), the card will be
contacted (isContacted()==true) and activated (isActivated()==true).

For a JXFS_CCD_TYPE_PERMANENT card reader isInContactPosition() and
isContacted() will always return the same value. As most unintelligent
JXFS_CCD_TYPE_PERMANENT card readers do not have sensors to distinguish if there
is a card at all, isInContactPosition() and isContacted() will always return true on those
readers.

CWA 16008-3:2009 (E)

47

6 Enum Classes

6.1 JxfsMSDStatusSelectorEnum

This enumeration class is used for the base getStatus(java.util.List) method.

Implements : -- Extends : JxfsStatusSelectorEnum

Field Returned Type Description
status JxfsStatus General status of the device
mediaStatus JxfsMediaStatus Status of the current media.
cardStatus JxfsCCDCardStatus Status of the chip card. This

status is available only if the
device implements the
IJxfsChipCardControl interface.

manipulationStatus JxfsManipulationStatusE
num

Speficies the state of any present
anti fraud feature.

retainBinStatus JxfsThresholdStatus Indicates the fill status of the
retain bin, if supported. This
status is only available if the
device service implements the
IJxfsMotorizedCard interface.

secureModuleStatus Integer Indicates the status of the security
module, if any. This status is only
available if the device service
implements the IJxfsMSDSecure
interface.

6.2 JxfsManipulationStatusEnum

This enumerated data type represents the possible states of a present anti fraud feature.

Implements : -- Extends : JxfsEnum

Field Description
presentWorking Anti fraud feature is present and is working correctly.

If a device has more than one security feature, this means
that all of them are present and working.

This status does not necessarily mean that the
manipulated status of the base status will ever be armed
as there are anti fraud features that prevent an attack, but
cannot report it.

presentNotWorking Anti fraud feature is present but not working correctly.
If a device has more than one security feature, this means
that at least one of them is not working correctly.

unknown It is not known if an anti fraud feature is present.
notSupported No anti fraud feature is present.

CWA 16008-3:2009 (E)

48

7 Codes

7.1 Error Codes

Value Meaning
JXFS_E_MSD_READFAILURE No read conditions were satisfied (that is, not all

tracks specified in tracksToRead parameter have
been read or no Watermark was read). It is possible,
however, that some tracks could be read. Check any
existing data object for extended information on
tracks actually read.

JXFS_E_MSD_NOMEDIA Media was removed before operation completion.
JXFS_E_MSD_INVALIDMEDIA No appropriated media was found.
JXFS_E_MSD_MEDIAJAMMED Media is jammed.
JXFS_E_MSD_SHUTTERFAIL Shutter could not be opened.
JXFS_E_MSD_NOTSUPPORTED
TRACK

At least one track specified in tracksToRead
parameter is not supported by the device.

JXFS_E_MSD_NOTRACKS No tracks specified in tracksToRead parameter.
JXFS_E_MSD_WRITEFAILURE No write conditions were satisfied.
JXFS_E_MSD_BADDATA Data is invalid.
JXFS_E_MSD_NOTSUPPORTED
CAP

The service does not have secure capability.

JXFS_E_MSD_PARITY Parity read error.
JXFS_E_MSD_READ_EOF Only SS,SE,BCC on track.
JXFS_E_MSD_NO_STRIPE No magnetic stripe or flux on stripe detected (if

device has capability to detect this situation).
JXFS_E_MSD_READ_OTHER Any other type of read error.

Value Meaning
JXFS_E_CCD_IOERROR IO error occurred. No ATR data is available.
JXFS_E_CCD_NOMEDIA Media was removed before operation completion.
JXFS_E_CCD_INVALIDMEDIA No appropriated media was found.
JXFS_E_CCD_MEDIAJAMMED Media is jammed.
JXFS_E_CCD_SHUTTERFAIL Shutter could not be opened.
JXFS_E_CCD_BADDATA Chip reported data was bad.
JXFS_E_CCD_BADPROTOCOL Protocol not supported.
JXFS_E_CCD_MISSINGMEDIA No media available when operation was initiated.
JXFS_E_CCD_INVALID_SEQUE
NCE

The chipIO() method was issued even if there was
no card available or the present card was not yet
activated.

Value Meaning
JXFS_E_MOTOR_MEDIAJAMMED Media is jammed.
JXFS_E_MOTOR_SHUTTERFAIL Shutter could not be opened.
JXFS_E_MOTOR_NOMEDIA There is no media to eject.
JXFS_E_MOTOR_BINFULL Retain bin is full.

CWA 16008-3:2009 (E)

49

7.2 Status Codes

Value Meaning
JXFS_S_MSD_MEDIA_STATUS mediaStatus property has changed.
JXFS_S_MSD_MANIPULATION
_STATUS

manipulationStatus property has changed.

Value Meaning
JXFS_S_CCD_MEDIA_STATUS mediaStatus property has changed.
JXFS_S_CCD_CARD_STATUS cardStatus property has changed.
JXFS_S_CCD_MANIPULATION_
STATUS

manipulationStatus property has changed.

Value Meaning
JXFS_S_MOTOR_BIN_STATUS retainBinStatus property has changed.
JXFS_S_MOTOR_BIN_CARDRE
TAINED

retainCardCount property has incremented.

Value Meaning
JXFS_S_MSD_SEC_STATUS secureModuleStatus property has changed.
JXFS_S_MSD_SEC_READY Security module ready.
JXFS_S_MSD_SEC_NOTREADY Security module not ready.
JXFS_S_MSD_SEC_UNKNOWN State of the security module cannot be determined

with the device in its current state.

7.3 Operation Codes

The following codes identify the operation that generated a JxfsOperationCompleteEvent or
JxfsIntermediateEvent:

Value Method
JXFS_O_MSD_READDATA readData, readWMtrack
JXFS_O_MSD_WRITEDATA writeData

Value Method
JXFS_O_CCD_CHIPINIT chipInit
JXFS_O_CCD_CHIPIO chipIO
JXFS_O_CCD_ACTIVATE_CAR
D

activateCard

JXFS_O_CCD_DEACTIVATE_C
ARD

deactivateCard

JXFS_O_CCD_WARM_RESET_C
ARD

warmResetCard

Value Method
JXFS_O_MOTOR_EJECTCARD ejectCard
JXFS_O_MOTOR_RETAINCARD retainCard

CWA 16008-3:2009 (E)

50

 The following codes identify the reason for a JxfsIntermediateEvent:

Value Meaning
JXFS_I_MSD_NO_MEDIA_PRES
ENT

The read operation request cannot progress because
there is no media inserted.

JXFS_I_MSD_MEDIA_INSERTE
D

The read operation request continues because a
media has been inserted.

Value Meaning
JXFS_I_CCD_NO_MEDIA_PRES
ENT

The read operation request cannot progress because
there is no media inserted.

JXFS_I_CCD_MEDIA_INSERTE
D

The read operation request continues because a
media has been inserted.

7.4 Constants

Value Meaning
JXFS_MSD_TYPE_SWIPE Swipe/pull through magnetic stripe reader/encoder.
JXFS_MSD_TYPE_DIP Dip magnetic card reader/encoder.
JXFS_MSD_TYPE_MOTOR Motorized card reader.
JXFS_MSD_SECTYPE_NOTSUP
PORTED

No security module available.

JXFS_MSD_SECTYPE_MMBOX MMBox module available.
JXFS_MSD_SECTYPE_CIM86 CIM86 module available.

Value Meaning
JXFS_CCD_TYPE_SWIPE Swipe/pull through chip card device.
JXFS_CCD_TYPE_DIP Dip chip card device.
JXFS_CCD_TYPE_MOTOR Motorized chip card device.
JXFS_CCD_TYPE_CONTACTLE
SS

Contactless chip card device.

JXFS_CCD_TYPE_DIP_LATCHE
D

Dip chip card device with a latch to fix the card.

JXFS_CCD_TYPE_PERMANENT Permanent chip card.

Value Meaning
JXFS_MOTOR_EJECT At power off /on card is ejected.
JXFS_MOTOR_EJECT_THEN_R
ETAIN

At power off /on card is ejected, then, after some
seconds, it is retained.

JXFS_MOTOR_NOACTION At power off /on no action is taken.
JXFS_MOTOR_READ_POSITIO
N

At power off /on card is brought to the read/write
position.

JXFS_MOTOR_RETAIN At power off /on card is retained.

Value Meaning
JXFS_MSD_SEC_NOCHECK No security check was requested.
JXFS_MSD_SEC_NOTREADY Security module was not ready.
JXFS_MSD_SEC_SECFAIL Security module failed reading media security sign.
JXFS_MSD_SEC_SECOK Successful security check.

CWA 16008-3:2009 (E)

51

7.5 Code Values

7.5.1 MSD Device types

Constant Numerical Value
JXFS_MSD_TYPE_SWIPE 1
JXFS_MSD_TYPE_DIP 2
JXFS_MSD_TYPE_MOTOR 4

7.5.2 MSD Operation Complete codes

Constant Numerical Value
JXFS_O_MSD_READDATA 4006
JXFS_O_MSD_WRITEDATA 4008

7.5.3 MSD Intermediate Event codes

Constant Numerical Value
JXFS_I_MSD_NO_MEDIA_PRESENT 4014
JXFS_I_MSD_MEDIA_INSERTED 4015

7.5.4 MSD Status codes

Constant Numerical Value
JXFS_S_MSD_MEDIA_STATUS 4005
JXFS_S_MSD_BIN_STATUS 4040
JXFS_S_MSD_SEC_READY 4052
JXFS_S_MSD_SEC_NOTREADY 4053
JXFS_S_MSD_SEC_UNKNOWN 4054
JXFS_S_MSD_SEC_STATUS 4055
JXFS_S_MSD_MANIPULATION_STATUS 4065

7.5.5 MSD Error codes

Constant Numerical Value
JXFS_E_MSD_READFAILURE 4007
JXFS_E_MSD_WRITEFAILURE 4009
JXFS_E_MSD_NOMEDIA 4010
JXFS_E_MSD_INVALIDMEDIA 4011
JXFS_E_MSD_MEDIAJAMMED 4012
JXFS_E_MSD_SHUTTERFAIL 4013
JXFS_E_MSD_NOTSUPPORTEDTRACK 4016
JXFS_E_MSD_NOTRACKS 4017
JXFS_E_MSD_BADDATA 4018
JXFS_E_MSD_NOTSUPPORTEDCAP 4056
JXFS_E_MSD_PARITY 4057
JXFS_E_MSD_READ_EOF 4058
JXFS_E_MSD_NO_STRIPE 4059
JXFS_E_MSD_READ_OTHER 4060

CWA 16008-3:2009 (E)

52

7.5.6 MSD Secure Module types

Constant Numerical Value
JXFS_MSD_SECTYPE_NOTSUPPORTED 4042
JXFS_MSD_ SECTYPE_MMBOX 4043
JXFS_MSD_ SECTYPE_CIM86 4044

7.5.7 MSD Security information codes

Constant Numerical Value
JXFS_MSD_SEC_NOCHECK 4061
JXFS_MSD_SEC_NOTREADY 4062
JXFS_MSD_SEC_SECFAIL 4063
JXFS_MSD_SEC_SECOK 4064

7.5.8 CCD Device types

Constant Numerical Value
JXFS_CCD_TYPE_SWIPE 1
JXFS_CCD_TYPE_DIP 2
JXFS_CCD_TYPE_MOTOR 4
JXFS_CCD_TYPE_CONTACTLESS 8
JXFS_CCD_TYPE_DIP_LATCHED 16
JXFS_CCD_TYPE_PERMANENT 32

7.5.9 CCD Operation Complete codes

Constant Numerical Value
JXFS_O_CCD_CHIPINIT 4108
JXFS_O_CCD_CHIPIO 4109
JXFS_O_CCD_ACTIVATE_CARD 4114
JXFS_O_CCD_DEACTIVATE_CARD 4115
JXFS_O_CCD_WARM_RESET_CARD 4116

7.5.10 CCD Intermediate Event codes

Constant Numerical Value
JXFS_I_CCD_NO_MEDIA_PRESENT 4106
JXFS_I_CCD_MEDIA_INSERTED 4107

7.5.11 CCD Status codes

Constant Numerical Value
JXFS_S_CCD_MEDIA_STATUS 4113
JXFS_S_CCD_CARD_STATUS 4117
JXFS_S_CCD_MANIPULATION_STATUS 4119

CWA 16008-3:2009 (E)

53

7.5.12 CCD Error codes

Constant Numerical Value
JXFS_E_CCD_NOMEDIA 4102
JXFS_E_CCD_INVALIDMEDIA 4103
JXFS_E_CCD_MEDIAJAMMED 4104
JXFS_E_CCD_SHUTTERFAIL 4105
JXFS_E_CCD_IOERROR 4110
JXFS_E_CCD_BADPROTOCOL 4111
JXFS_E_CCD_BADDATA 4112
JXFS_E_CCD_INVALID_SEQUENCE 4113
JXFS_E_CCD_MISSINGMEDIA 4118

7.5.13 Motorized Card Operation Complete codes

Constant Numerical Value
JXFS_O_MOTOR_EJECTCARD 4245
JXFS_O_MOTOR_RETAINCARD 4250

7.5.14 Motorized Card Status codes
Constant Numerical Value
JXFS_S_MOTOR_BIN_STATUS 4242
JXFS_S_MOTOR_BIN_CARDRETAINED 4241

7.5.15 Motorized Card Error codes
Constant Numerical Value
JXFS_E_MOTOR_MEDIAJAMMED 4246
JXFS_E_MOTOR_SHUTTERFAIL 4247
JXFS_E_MOTOR_NOMEDIA 4248
JXFS_E_MOTOR_BINFULL 4251

7.5.16 Motorized Card Capabilities
Constant Numerical Value
JXFS_MOTOR_EJECT 4230
JXFS_MOTOR_EJECT_THEN_RETAIN 4231
JXFS_MOTOR_NOACTION 4232
JXFS_MOTOR_READ_POSITION 4233
JXFS_MOTOR_RETAIN 4234

CWA 16008-3:2009 (E)

54

8 Device Service Interface Methods
The Device Service interface is common to all device services of this device type. It is used by the Device
Controls to access the functionality of the device. This interface has to be implemented by any J/XFS Device
Service.
The device type specific Device Service interface is similar to the Device Control interface. All device specific
method calls are extended by an additional parameter (int control_id). This is always added as the last parameter
in every operation.

9 Appendix A: Manipulation of Card Reader

In the case that a card reader is manipulated there are in general two options how to treat this situation. Either
the DS does not allow further operation and completes with a hardware error (case #1) or the device service only
flags the manipulation, but allows the application to continue (case #2).

Case #1: DS Auto Completes With the Result Code: JXFS_E_HARDWAREERROR

Application

SIU_DC

MSD/CCD_DC

Manipulator

3: card reader manipulation3: card reader manipulation

4: JXFS_S_SIU_PORT_STATUS, index = JXFS_SIU_TAMPER, value =
JXFS_SIU_ON
4: JXFS_S_SIU_PORT_STATUS, index = JXFS_SIU_TAMPER, value =
JXFS_SIU_ON

7: JOCE(JXFS_E_HARDWAREERROR)7: JOCE(JXFS_E_HARDWAREERROR)

2: JXFS_I_MSD_NO_MEDIA_PRESENT2: JXFS_I_MSD_NO_MEDIA_PRESENT

5: JXFS_S_HARDWAREERROR5: JXFS_S_HARDWAREERROR

6: JXFS_S_MANIPULATION6: JXFS_S_MANIPULATION

1: readData()1: readData()

Summary
• readData() is initiated successfully; the device waits for a card to be entered
• the card reader is manipulated:

o a JXFS_S_SIU_PORT_STATUS event, if supported, is generated to indicate that tampering
has been detected

o a ‘hardware error’ status event plus a manipulation event is generated
• to secure the device, the device service automatically completes the readData() operation with the return

code JXFS_E_HARDWAREERROR. If the device service receives a cancel(599) command before it
initiates the automatic completion it returns

o the result code: JXFS_E_CANCELLED

CWA 16008-3:2009 (E)

55

• Subsequent invocations of readData() will result in one of the sequences shown below:

o if no communication takes place between the device service and the physical device, a
JXFS_E_HARDWAREERROR exception will be thrown.

MSD/CCD_DC

Application

1: readData()1: readData()

JXFS_E_HARDWAREERROR exceptionJXFS_E_HARDWAREERROR exception

o if the device service communicates with the physical device, an operation complete event with

result code JXFS_E_HARDWAREERROR will be returned.
MSD/CCD_DC

Application

2: JOCE(JXFS_E_HARDWAREERROR)2: JOCE(JXFS_E_HARDWAREERROR)

1: readData()1: readData()

CWA 16008-3:2009 (E)

56

Case #2: DS continues operation, but reports manipulation status

Application

SIU_DC

Manipulator

MSD/CCD_DC

6: cancel()6: cancel()

3: card reader manipulation3: card reader manipulation

4: JXFS_S_SIU_PORT_STATUS, index =
JXFS_SIU_TAMPER, value = JXFS_SIU_ON
4: JXFS_S_SIU_PORT_STATUS, index =
JXFS_SIU_TAMPER, value = JXFS_SIU_ON

7: JOCE(JXFS_E_CANCELLED)7: JOCE(JXFS_E_CANCELLED)

5: JXFS_S_MANIPULATION5: JXFS_S_MANIPULATION

1: readData()1: readData()

2: JXFS_I_NO_MEDIA_PRESENT2: JXFS_I_NO_MEDIA_PRESENT

Summary
• readData() is initiated successfully; the device waits for a card to be entered
• the card reader is manipulated:

o a JXFS_S_SIU_PORT_STATUS event, if supported, is generated to indicate that tampering
has been detected

o a manipulation event is generated
o the device service usually cancels the operation to prevent that a bank customer inserts a card

that can be illegally read or used

• the application does not issue additional read requests as long as the manipulation status is pending or it is

accepting the risk of manipulated cards of bank customers.

